

Form 836 (7/06)

LA-UR-
Approved for public release;
distribution is unlimited.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Title:

Author(s):

Intended for:

Ligature: Component Architecture for High-Performance Applications

Katarzyna Keahey
Peter Beckman
James Ahrensfkate,beckman,ahrensg@acl.lanl.gov

Advanced Computing Laboratory
Los Alamos National Laboratory

Los Alamos, NM 87545

Abstract

The increasing feasibility of developing applications
spanning nationwide supercomputing resources makes pos-
sible the creation of simulations composed of multiple in-
terdisciplinary components and capable of modeling natu-
ral and social phenomena of national importance with un-
precedented speed and accuracy. However, the potential
offered by hardware technology often fails to be fully re-
alized due to the lack of software environments support-
ing such efforts. Furthermore, the complexity of combin-
ing within one application components with different per-
formance characteristics often prevents such applications
from achieving required performance levels. The Ligature
project at LANL addresses the issue of designing a soft-
ware infrastructure enabling fast and efficient development
of multi-component applications, and that of providing per-
formance guidance to the programmer using this infrastruc-
ture. Ligature allows the programmer to define component
interfaces specifying how heterogeneous, distributed com-
ponents can interact within a larger system and provides
a reusable infrastructure capable of connecting these com-
ponents. These interfaces, as well as information about
component performance are accessible through a database.
Within this framework we are trying to understand how
information about the performance of individual compo-
nents, and information about performance of the framework
can be combined to develop a performance-aware multi-
component application.

1. Introduction

Present day computing infrastructure [4] enables the de-
velopment of scientific simulations on an unprecedented
scale. Implementing those simulations requires interdisci-

plinary collaborations involving aspects of scientific com-
puting, visualization and data management. Although the
hardware technology required by such applications is be-
coming increasingly more common, the development of
environments which would enable programmers to effi-
ciently use this technology lags behind. Due to the lack
of clearly defined interfaces, and execution paradigms be-
tween project components, collaborations often become a
bottleneck of project development and rarely result in effi-
cient solutions.

It is clear that as our potential for solving complex prob-
lems increases with the developing hardware technology,
we will need a breakthrough in software design to match
these new capabilities. A similar breakthrough introduced
high-level languages as an alternative to machine instruc-
tion programming and revolutionized software development
by allowing programmers to develop software much faster,
make it more reliable, and by clearly defining areas capa-
ble of performance improvement (code generation for ex-
ample). Today we need to think at an even higher level
of abstraction and develop novel programming techniques,
which would deal with the heterogeneity and distributed
computing aspects of modern programming. If we want the
development of scientific simulations to win the race with
constantly advancing science, and growing hardware capa-
bilities, this development has to be automated, accelerated
and provide a focus for performance improvement.

This paper will describe Ligature, a component architec-
ture defining a set of abstractions and techniques for high-
performance scientific component programming. Ligature
in music is a symbol that combines within itself several
notes to be sung together; similarly we are trying to develop
a system capable of combining several independently devel-
oped high-performance components so that they efficiently
work together in one application. We believe that by defin-
ing programming abstractions at the level of heterogeneous
program components, and providing a reusable infrastruc-

ture which can combine those components, we will cre-
ate an environment enabling quick and efficient creation of
multi-component interdisciplinary applications. In addition
to enabling the programmer to think at a higher level and
therefore develop applications faster, defining abstractions
at this level will also enable him or her to reuse components
across applications and through reusability also contribute
to faster development. Defining clear component specifica-
tions will allow us also to reuse the combining infrastructure
and will thereby make its optimization more cost-effective.
Finally, through defining those abstractions Ligature will
enable run-time inclusion of components.

The latter feature is particularly important in modeling
real-time phenomena such as crisis forecasting and man-
agement in the DELPHI project at Los Alamos. A stat-
ically developed simulation will not suffice here as new
factors may arise at run-time and will need to be incorpo-
rated into the simulation as the situation unfolds. Further-
more, new managing algorithms can be developed concur-
rently with crisis modeling and incorporated into the sim-
ulation on the fly. Another example of the application of
component-based programming is the need for refinement
in large, complex simulations. For example having imple-
mented a traffic modeling system, a complex task in itself,
we may want to use it in order to model emissions. This
may also include modeling air movement. The complex-
ity of these components, as well as their reusability poten-
tial, make component-based programming the most cost-
effective solution.

The need for component programming has been recog-
nized by the business world and resulted in the develop-
ment of systems such as CORBA [11], DCOM [12], Ac-
tive X and others. However, these systems were designed
primarily for sequential applications and are not necessar-
ily suitable for high-performance programming. Similarly,
the need for more complex abstractions than those offered
by sequential languages lead to the development of parallel
languages and libraries. From the point of view of parallel
programming, the most important shortcoming of the exist-
ing component systems is that they don’t support abstrac-
tions necessary for high-performance programming [8] and
they don’t place enough emphasis on performance crucial in
parallel programming [5]. In the case of high-performance
systems, the latter problem is of particular importance; it is
crucial that the multi-component application developer has
access to not only efficient components and efficient means
of combining them, but also can quickly and reliably assess
and predict performance of a multi-component application.
Finally, the existing component architectures are invasive,
that is, they require substantial modifications to existing ap-
plications which may not be acceptable to the developer of
high-performance components. It is crucial that the abstrac-
tions and techniques comprised in a component architecture

for scientific computing are based on a clear understanding
of the needs of all the components which can be involved in
a high-performance multi-component application contain-
ing elements of parallelism and concurrency. Only a clear
formulation of such abstractions will allow us to develop
efficient multi-component application and focus on devel-
oping algorithms and schemes for optimizing component
interactions.

The rest of the paper is organized as follows. In section
2, we introduce a general set of requirements defining the
design of Ligature, and in section 3 describe an architec-
ture designed based on those requirements. In section 4 we
will highlight performance issues arising when combining
multiple components in a distributed environment and pro-
pose how to deal with them. We conclude in section 5 and
present future directions.

2. Characteristics of Component Architecture
for High Performance Applications

The introduction explained the motivation for Ligature
and provided a rough outline of its functionality. Before
we proceed to consider a concrete design, we will briefly
summarize the characteristics that a component architecture
should possess in order to effectively stage interactions of
high-performance components.� Addressing different paradigms and levels of gran-

ularity. High-Performance components are imple-
mented according to varying paradigms, each defin-
ing different interactive requirements. For example
a component based on a SPMD implementation re-
quires interaction with all the processes taking part
in computation, while a multi-threaded component
won’t necessarily pose such a requirement. Further-
more, the efficiency of interactions between some of
the components relies on recognizing very fine level
of granularity. A multi-component application built
in this way can be wrapped as a component itself and
later take part in coarser grain interactions with other
components.� Integrating local components, as well as remote com-
ponents in a seamless manner. Interacting compo-
nents may be local (share an executable) or remote
(distinct executables) with respect to each other. A
component architecture should accommodate both
cases in a seamless manner, that is, little or no change
should have to be made to a user’s code in order
to switch between these configurations. It is up to
the framework to take advantage of locality, for ex-
ample by avoiding making copies of data shared be-
tween components whenever possible. Remote com-
ponents could be interacting over wide-area networks

2

or local-area networks; in either case the architecture
should be capable of orchestrating efficient commu-
nication between the components. In particular, as-
suming interaction over fast local networks, where
network latency is often comparable with internal la-
tencies of component hosts, puts additional emphasis
over the high-performance aspect of interaction with
the framework.� Heterogeneity in all aspects of the architecture. As
in many traditional component architectures, multi-
component applications will incorporate different
levels of heterogeneity ranging from hardware (dif-
ferent host architectures, different networks), through
software (for example Fortran, C++, different C++
based libraries, etc.). However, given the fact
that many high-performance components are imple-
mented using sophisticated run-time systems with
differing properties interoperability of local compo-
nents will be much harder and sometimes impossible
to achieve (for example a threaded component may be
incompatible with a component which is not thread-
safe).� Automation and ease of programming. The abstrac-
tions and mechanisms provided by a component ar-
chitecture should be high-level enough to to signifi-
cantly contribute to accelerating and automating the
development of a multi-component application even
for a relatively simple application. For example, a
mechanism should be provided for ensuring the con-
sistency of actual component implementation and in-
terfaces that are exported for use of different multi-
component applications. This mechanism could take
the form of interface generation based on highlighted
features of the implementation or run-time checks.� Non-invasive integration. We will call a system in-
vasive if it requires substantial changes to an exist-
ing code in order to interoperate with it. Traditional
component-oriented systems (such as CORBA) are
often invasive, that is they require the programmer
to write code in terms of data structures supported
by them. There are two reasons to make the re-
quirement for non-invasiveness in the context of high-
performance components. First, they are complex in
nature which makes modification difficult and error-
prone, especially as it often requires the programmer
to learn new names for implemented functions. Sec-
ond, the efficiency of many applications relies on fea-
tures such as a specific memory allocation scheme;
modifications requiring a different scheme, or copy-
ing to a different scheme will affect the performance
of a component.

� Dynamic structure of applications. Traditional ap-
plications are usually statically composed of some
functional units. Partially due to the dynamic na-
ture of a distributed environment composed of many
contended heterogeneous resources, and partially due
to the increasing need for flexibility, the multi-
component applications have to be dynamic. This
means that their interactions should be orchestrated
in such a way as to allow the programmer to add or
remove components from the application at run-time.
Such decision could be influenced both by necessity
and the changing performance characteristics of the
application.� Design for efficiency. Performance is much more crit-
ical in the system we are trying to build than in tra-
ditional component architectures. This should not
only be acknowledged in the API design, but also
deserves a treatment of its own. Since by necessity
the components will be much more independent of
each other than functional units in a monolithic ap-
plication, the programmer will need not only efficient
tools, but also information about what role the perfor-
mance characteristics of specific components, such as
scalability, numeric scalability, resource availability
for a particular component, predictability and execu-
tion paradigm could play in interactions with other
units. This information has to be harvested and pro-
vided as part of the design.

These characteristics are often interdependent; for exam-
ple the requirement for non-invasiveness is caused both by
the requirement for ease of use and efficiency. Also, not all
of these requirements can be satisfied fully in the context
of high-performance applications. For example, combin-
ing two components based on incompatible run-time sys-
tems within one executable is a whole separate issue; this
research is pursued [7].

3. Component Architecture Design

So far we have been informally using the notion ofcom-
ponentto describe a self-contained functionality or appli-
cation which can interact with other components. In the
context of component framework we will make this require-
ment of interactive capabilities more specific, and say that a
component defines its inputs and outputs in some standard-
ized manner, as well as implements a set of functionalities
common to all components, such as behavior on error.

The component architecture we will describe now is a set
of abstractions and techniques using these standardized fea-
tures of independently developed components to implement
efficient interactions between them. In addition, the frame-
work may contain some standard components facilitating

3

interactions. The design presented in this section builds on
our experiences with PARDIS [9] and PAWS [2].

3.1. Elements of the Architecture

The interaction of elements of Ligature is depicted in fig-
ure 1. We will now describe these elements:� Component Description Syntax (CDS). This syntax

enables components to define their inputs and out-
puts to each other and the combining framework in-
dependent of the language in which they were im-
plemented. We will call a set of of such definitions
pertaining to one component acomponent interface.
The existence of common syntax not only satisfies
the heterogeneity requirement (by allowing the com-
ponents speak the same language), but also since it
can be interpreted by the framework at run-time, new
components can be added dynamically to an execut-
ing application. CDS is crucial for performance and
functionality of the component architecture since the
quality and detail of the abstractions it includes will
define the possibilities of component interactions.

Currently, Ligature considers two modes of com-
ponent interaction: data-centric interactions, and
invocation-centric interactions. In data-centric inter-
actions the input and output specifications of com-
ponents consist entirely of data that the component
consumes and produces. This style of interaction is
most popular in building dataflow interactions. Its
main advantage is generality: the input or inputs can
be provided by different components and the outputs
likewise directed to different recipients, which makes
interchanging components easy. Our data-centric in-
teractions are based on the experiences of PAWS, but
extend the PAWS model by introducing an ”execute”
function whose task is to ”fire” a component. This
extension was made in order to enable seamless tran-
sition between building interactions of local and re-
mote components (ie. if two components are local
with respect to each other, not only data, but also
control must be passed from one to the other in or-
der to enable a component to execute). The current
design assumes only one standard ”execute” method
per component, but may be extended in the future.
Furthermore, we allow a component with an indepen-
dent thread of control to ”fire” whenever it receives
all necessary inputs.

In invocation-centric interactions the input and output
specifications of components consist of a list of meth-
ods and arguments used by those methods rather than
purely of data. Invoking methods on a component
enables a much more closely defined interaction, in

which groups of arguments can be sent out as well as
received, but at the same time by being more specific
limits the number of components which can partici-
pate.

Following PARDIS, we use an extended version of
CORBA IDL as the CDS defining component inter-
faces. The extensions include:

– Clear specifications of component inputs, out-
puts and their relationships orcontracts. Com-
ponent contracts describe which inputs need to
be provided in order for the component to pro-
duce specific output or group of outputs. A
component interface can contain several such
contracts.

– Multi-dimensional distributed grids and dis-
tribution specifications similar to those intro-
duced in [8]. Both PARDIS and PAWS showed
how the knowledge of distribution can be used
to speed up data transfer between interacting
SPMD components. Furthermore, [10] shows
that knowing component distribution at the time
of building an application (as opposed to finding
out at run-time) allows the programmer to make
efficient choices.

– Restricted and unrestricted templates. CDS al-
lows templated types similar to those in C++,
however the definitions of templates can re-
stricted to a set of types, constants and ex-
pressions actually implemented by the compo-
nent. For example a particular distributed grid
type produced by a component may be either
checkerboard or blockwise, but not otherwise.� Reusable Combining Infrastructure. The reusable

combining infrastructure contains all functionality
necessary to locate, move, and activate components,
as well as libraries including support for local and re-
mote interactions between components. Locating and
activating components is performed in cooperation
with other elements of the architecture (see reposi-
tory and combining mechanism). The infrastructure
also contains explicit interfaces to those elements, for
example it allows the programmer to browse repos-
itories. Implementing interactions involves not only
communication and data translation; the infrastruc-
ture must also handle restrictions imposed on interac-
tions, such as security and access levels, and must in-
clude elements of fault tolerance and error handling.
Furthermore we require that the infrastructure allow
the programmer to dynamically include and delete
components from interactions based on their inter-
face descriptions. In order to satisfy performance re-

4

quirements the infrastructure may or may not inter-
face with the run-time system underlying a particular
component implementation. These issues will be fur-
ther discussed in the next section.� Binding. The binding is what gives the component
interface semantics relative to a particular software
system. More specifically, binding between a com-
ponent CDS and its implementation is the code that
for a particular software system will bind (or trans-
late) a CDS definition into format used by the com-
ponent implementation. For example, a binding to a
POOMA [1] system might translate a CDS definition
of a multi-dimensional grid into a multi-dimensional
POOMA field.

Binding allows us to compromise between general-
ity of the CDS descriptions and the efficiency needed
by a particular implementation. For example, a grid
fragment defined in CDS and exchanged between
components should not assume any particular imple-
mentation of the grid; on the other hand knowing that
the grid is implemented in contiguous memory could
substantially speed up interactions with it. Pushing
this information into binding allows us to satisfy both
requirements.

Since providing exact and efficient bindings to ev-
ery implementation framework is difficult, Ligature
assumes two-levels of binding: a generic language
binding using some standard representation, and a
specific binding that can be formulated by more ad-
vanced users with more stringent requirements. A
generic binding will usually force the user to make
a copy between the standard representation and struc-
tures which are actually used, but will be immediately
available; the specific binding will require the user to
design a mapping to a particular implementation but
will allow very efficient direct interaction. Once de-
signed, a binding can be generated in all future in-
teractions with a given framework. We are currently
working on developing a compiler automatically gen-
erating the binding code, and also on a generic com-
piler builder. Furthermore, we plan to use annotated
application code to generate interface definitions.� Repository. Repositories contain information about
components needed to enable the programmer to
put together an efficient multi-component applica-
tion. We distinguish two kinds of repositories:
CDS Repositories and Run-Time Repositories. CDS
repositories contain descriptions of component inter-
faces, that is sufficient information to enable the pro-
grammer to design and put together a correct multi-
component application. Run-Time Repositories con-

tain information necessary to run and refine the per-
formance of the multi-component application, that is
they contain information on how to locate and acti-
vate components, their resource requirements, secu-
rity information, scalability and other performance
characteristics. This will be discussed in detail in the
next section.� Building Mechanism. The Building Mechanism en-
ables the programmer to combine different compo-
nents into a multi-component application in a conve-
nient and flexible fashion. It is composed of aBuild-
ing InterfaceandHelper Modules.

The Building Interface allows the programmer to
communicate to the system which components
should be composed into an application and how;
it also interfaces elements of the system described
above in order to provide the programmer with infor-
mation about components. Such interface could be
provided by a scripting language or a Graphical User
Interface (GUI). An example of the GUI approach
is shown in [6] where the programmer simply draws
line connections between components represented as
boxes. Scripting has been used in PAWS where the
application programmer writes a script which selects
and combines specific components, once components
are combined the script starts them running and can
also control their execution. Using both mechanisms
interchangeably means that a GUI session can be
saved as a script or a script input can serve as an initial
state in a GUI session; in either case the programmer
is able to save a library of multi-component applica-
tions for future use.

Helper Modules aid the programmer in the compo-
sition phase. For example a syntax checking mod-
ule can find out if all the necessary inputs to par-
ticipating components have been provided and if
they match the outputs from which they are derived.
Of particular importance are the scheduling mod-
ule (establishes where and when components can be
scheduled to execute) and the performance evalua-
tion/prediction module (tries to evaluate or predict
performance given a certain machine/time configu-
ration). In cooperation, and allowing for some ex-
perimentation, these modules allow the programmer
to choose between the best configurations of compo-
nents.

3.2. The Mechanism of Component Interaction

There are two modes in which the programmer can use
Ligature: contribute components for future use and sharing,

5

Figure 1. The figure shows how the elements of Ligature work to gether: the building mechanism
allows the programmer to access component information in th e repository; a finished scenario is
then run using the combining infrastructure which interfac es components through implementation-
specific bindings (shaded areas in the picture). Bindings ar e generated based on a CDS specification
which is also used in the repository.

and use components to compose multi-component applica-
tions.

When contributing components the programmer first im-
plements a component, then specifies its interface, or has
that interface automatically generated based on an anno-
tated version of the implementation. Automatic generation
can also be used to provide binding, which uses the infor-
mation contained in the component interface to enable in-
teraction between the component implementation and the
combining infrastructure. The component, or rather its in-
terface, location and activation information are then regis-
tered with the repositories and become ready for use. Once
a component is implemented and registered with a reposi-
tory it can be reused in many applications.

In order to use components the programmer browses the
component repository to choose components suitable for his
or her application. Then he or she compose those compo-
nents using the combining mechanism. The reusable in-
frastructure is responsible for locating, if necessary down-
loading, compiling and activating these components. The
programmer then connects component inputs and outputs
to form a multi-component application. When this process
is finished the programmer can start and control the appli-
cation. The process of application building can then be re-

peated and refined using information described in the run-
time repository; the components can be exchanged, as the
programmer becomes familiar with the requirements and
shortcomings of the application.

4. Mechanisms for Building Performance-
Sensitive Multi-Component Applications

An important and difficult aspect of developing a com-
ponent architecture is ensuring high performance of multi-
component applications. There are two distinct problems
that need to be addressed here: designing an efficient im-
plementation of the architecture, and providing enough in-
formation to the application programmer to develop multi-
component applications efficiently. The first problem can
be approached by the development of sufficiently detailed
set of abstractions (for example including the data distri-
bution information and thereby enabling parallel transfer),
providing mechanisms exploiting implementation-specific
features of components (for example through binding), and
providing an efficient implementation of the combining in-
frastructure. We are trying to address these issues through
our design of the architecture as described in the previous

6

section. The second problem, which will be addressed in
this section, requires recognizing and defining performance
requirements of multi-component applications. The tradi-
tional approach is not sufficient here, since in a traditional
”monolithic” application all of its parts are designed to
work specifically within that application. The purpose of a
component architecture is to compose already existing self-
contained components, not to modify them. It is therefore
essential that we formulate a ”performance interfaces” of
components and ways of integrating those interfaces which
parallel their functional interfaces as described by the archi-
tecture.

We recognize that performance of components can be in-
tegrated on multiple levels; at present our focus is to explore
ways of integrating component performance on two levels:
application level, and run-time system level.� Application-Level. Due to component interdependen-

cies in a multi-component application optimal perfor-
mance of individual components does not guarantee
optimal performance of the entire application. An il-
lustration of this problem is provided in [10] which
describes a scheduling problem for an image pro-
cessing pipeline. Let A and B be components in the
pipeline such that optimal data distribution for A is
different from the optimal distribution for B. Since
the components have to interact with each other in
the pipeline, the following question arises: what is
more efficient, to use optimal data distribution for
each component and pay the cost associated with data
translation between components, or to use unoptimal
distribution for at least one of the components if that
eliminates the need for translation. This issue is made
even more challenging if we consider that different
components can be run on different resources. Initial
research in this area includes work by Brewer [3] us-
ing statistical models of profiling data to choose an
optimal algorithm from a collection of algorithms for
a given architecture. Another example might involve
components with different scalability characteristics.

We address this problem by attaching to each compo-
nent interface its performance data and presenting it
together with other run-time information; this enables
the user to choose the best possible fit from available
resources. In order to do that, the architecture per-
forms the following actions:

– Performance data harvesting. This process
works by instrumenting the component binding
code, and at programmer’s request also com-
ponent code, with performance measurement
calls. After each execution the component uses
the run-time repository interface embedded in

the combining infrastructure to report results to-
gether with information about the environment
to the run-time repository. We use the TAU sys-
tem [13] to measure performance; a collabora-
tion between LANL and the University of Ore-
gon is currently working on automating the in-
strumentation process and making it a part of
binding code generation; in this way gathering
performance data requires no special effort from
the user. The performance data is harvested
for components as well as component frame-
work parts; in the image processing problem
it could for example be used for estimating the
time the combining infrastructure would use to
redistribute data.

– Performance prediction and composition. The
data harvested over multiple component execu-
tions can be used in predicting performance of
new compositions of components. Given such
predictions, the combining mechanism will not
only present the user with a set of choices
matching interactive requirements of compo-
nents, but also several scenarios of the expected
performance of those choices. The initial imple-
mentation will be confined to data present in the
database; later we plan to experiment with ex-
trapolating performance models from datasets,
and scaling them based on different environ-
mental parameters.� Run-Time-Level. Just as adjusting the performance of

one component application can influence the whole,
the combining framework and run-time systems un-
derlying the particular components can also influ-
ence each other’s performance. For example consider
a multi-threaded application designating one thread
to handle communication with the combining infras-
tructure; on one hand this thread competes for re-
sources with the application and can therefore slow
it down, on the other through enabling asynchronous
communication it can prevent other components from
stalling, and in this way contribute to increasing the
overall performance of the multi-component applica-
tion.

In order to preserve generality and at the same time
allow programmers to experiment with performance
tuning Ligature supports two styles of implementing
the combining infrastructure: a basic implementation
containing no interface to the component run-time
system, and therefore incapable of interacting with
it, and another which specifies such interface. The
first approach can support interactions with compo-
nents of sequential and SPMD; it guarantees inter-

7

action with a wide range of components, but at the
same does not allow the programmer to exploit the
features of run-time system. Providing a run-time
system interface on the other hand allows the com-
bining infrastructure to to interact with the run-time
system of the component in implementing commu-
nication. Providing this interface will allow the pro-
grammer to experiment with different configurations
and answer questions about the relationship of com-
munication and computation resources in the context
of a particular component. Again, this performance
data will be harvested, and given to the user in the
form of recommendations. Implementing a run-time
system interface per run-time system implementation
can be an arduous task, however we are hoping to
limit the number of necessary implementations by
defining classes of run-time systems based on the
functionality required by the combining infrastruc-
ture for implementation of interesting interactions.

5. Summary and Status

This paper describes an architecture for component pro-
gramming capable of integrating high-performance compo-
nents. We identified several requirements that such archi-
tecture should fulfill, and presented a design which answers
these requirements. We outlined our implementation of the
component description syntax understandable to all com-
ponents, independent of their implementation which allows
us to combine heterogeneous components. By specifying a
binding to a particular implementation we ensure that the
genericity of the description syntax won’t prevent us from
using implementation-specific features necessary for high-
performance. Furthermore, the existence of such common
syntax allows us to dynamically integrate application com-
ponents. Automating the generation of binding code with
performance instrumentation will enable us to facilitate in-
tegrating components into the framework and harvesting
performance data. We further described how we plan to
use this data contained in Ligature repositories to allow the
programmer to develop efficient component applications.

Ligature is currently in progress. More implementation
and simulation work will have to be done to gain better in-
sight into details of the proposed architecture and ways to
develop the suggested performance mechanisms.

References

[1] S. Atlas, S. Banerjee, J. Cummings, P. J. Hinker, M. Srikant,
J. V. W. Reynders, and M. Tholburn. POOMA: A High Per-
formance Distributed Simulation Environment for Scientific
Applications. InSupercomputing ’95 Proceedings, Decem-
ber 1995.

[2] P. H. Beckman, P. K. Fasel, W. F. Humphrey, and S. M.
Mniszewski. Efficient Coupling of Parallel Applications Us-
ing PAWS. InProceedings of the 7th IEEE International
Symposium on High Performance Distributed Computation
(to appear), July 1998.

[3] E. A. Brewer. High-Level Optimization via Automated Sta-
tistical Modeling. In5th ACP SIGPLAN Symposium on
Principles and Proctice of Parallel Programming (PPoPP),
July 1995.

[4] I. Foster and C. Kesselman, editors.The Grid: blueprint for
a new computing infrastructure. Morgan Kaufmann, 1999.

[5] A. Gokhale and D. Schmidt. Evaluating CORBA La-
tency and Scalability Over High-Speed ATM Networks. In
Proceedings of the 17th International Conference on Dis-
tributed Systems, May 1997.

[6] C. R. Johnson and S. G. Parker. A Computational Steering
Model Applied to Problems in Medicine. InSupercomputing
’94 Proceedings, pages 540–549, 1994.

[7] L. V. Kale, M. Bhandarkar, N. Jagathesan, S. Krishnan, and
J. Yelon. Converse: An Interoperable Framework for Paral-
lel Programming. InProceedings of the 10th International
Parallel Processing Symposium, April 1996.

[8] K. Keahey and D. Gannon. PARDIS: A Parallel Approach
to CORBA. InProceedings of the 6th IEEE International
Symposium on High Performance Distributed Computation,
pages 31–39, August 1997.

[9] K. Keahey and D. Gannon. PARDIS: CORBA-based Archi-
tecture for Application-Level Parallel Distributed Computa-
tion. In Supercomputing ’97 Proceedings, November 1997.

[10] G. C. Lee, Y.-F. Wang, and T. Yang. Global Optimization
for Mapping Parallel Image Processing Tasks on Distributed
Memory. Journal of Parallel and Distributed Computing,
45(1):29–45, 1997.

[11] OMG. The Common Object Request Broker: Architec-
ture and Specification. Revision 2.0. OMG Document, June
1995.

[12] R. Sessions.COM and DCOM: Microsoft’s Vision for Dis-
tributed Objects. John Wiley & Sons, 1997.

[13] S. Shende, A. D. Malony, J. Cuny, K. Lindlan, P. Beckman,
and S. Karmesin. Portable Profiling and Tracing for Par-
allel Scientific Applications using C++. InProceedings of
SPDT’98: ACM SIGMETRICS Symposium on Parallel and
Distributed Tools, August 1998.

8

	25
	25-1

	laur #: 00-1519
	title: Ligature: Component Architecture for High-Performance Applications
	authors: K. Keahey, P. Beckman and J. Ahrens
	submitted to: International Journal of High-Performance Computing Applications—Special Issue on Performance Modeling, Vol 14. No. 4, Winter 2000
	menu warning:

